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1. INTRODUCTION 
 
Fishery stock assessments are mathematical models that estimate the current status of a fish stock and are 
the foundation of sustainable fisheries management. Stock assessments typically rely on a number of data 
types to estimate key biological processes, the effects of fishing activity, and, in some cases, the influence 
of environmental conditions on the past and current stock status. Each stock assessment is unique and 
there is no objective criterion that simultaneously summarizes the results of an assessment, determines if 
the model fits the data adequately, and evaluates whether the model is well-specified. As a result, stock 
assessment analysts rely on a suite of model diagnostics to ultimately arrive at a single base model (or in 
some cases a suite of base models termed an ensemble of models) to inform management decisions for a 
specific fish stock.  

There are a number of regional differences in developing stock assessment models, and our goal here is to 
document the model diagnostics commonly used to develop a base model, or ensemble of models, for 
stocks managed by NOAA Fisheries, while incorporating the regional variation in methods. Models, 
modeling software, and diagnostic methods are tailored based on data availability, species life history, 
and unique fishery conditions, all of which vary from stock to stock and region to region. We note that 
some model diagnostics are broadly applicable to all regions of the country, whereas others have more 
limited use or may be applied differently across regions. 

We do not claim that this document is comprehensive nor do we wish for it to impede future development 
of model diagnostic methods or implementation of diagnostic best practices. This document provides 
information on diagnostic methods for NOAA Fisheries stock assessment scientists, especially those new 
to the agency, as well as management partners from the Fishery Management Councils and other 
assessment stakeholders. However, we note that this a highly technical document and point readers to 
additional stock assessment and quantitative modeling resources such as Quinn and Deriso (1999) and 
Haddon (2011) to help understand and provide additional context and background on the various methods 
described herein. We hope also to encourage continued discussion of best practices and to clarify 
technical concepts that often arise in the stock assessment review process.  

2. U.S. REGIONAL CONTEXT 

In this section we provide an overview of the stock assessments conducted in each region, including the 
types of stocks assessed (life histories), kinds of data used (fishery-independent survey/fishery-dependent 
survey), time frames of data, and software packages. A discussion of the assessment review process in 
each region is beyond the scope of this document, and we recommend readers go to Lynch et al. (2018) 
for a full overview of the regional assessment review process. However, we do note that in all regions 
stock assessments are subject to peer review at different levels depending on the number of new methods 
applied, with more change resulting in more thorough reviews. Differences between regions highlighted 
in this section may help readers understand the various applications of the common model diagnostics 
across regions.  
 
2.1. Northwest Fisheries Science Center 
 
The Northwest Fisheries Science Center (NWFSC) assesses groundfish (numerous rockfishes and 
flatfishes along with Pacific hake, lingcod, sablefish, and others) and Pacific salmon. The Southwest 
Fisheries Science Center (SWFSC, discussed next) also assesses groundfish and Pacific salmon; however, 
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for both the NWFSC and SWFSC, assessments of Pacific salmon follow a unique framework1 that differs 
substantially from many marine fish assessments and are not addressed in this document. The groundfish 
assessments conducted by NWFSC and SWFSC differ only in the specific biology, data sources, and 
needs for each species. Division of groundfish assessments between the two science centers depends on 
staff availability and expertise with data sources (e.g., stocks that are more abundant in California are 
more likely to be assessed by SWFSC staff). 

Groundfish assessments rely on both fishery-dependent and fishery-independent data sources. Fishery-
dependent data include annual landings, discard (rates, numbers, or tons), catch per unit effort (CPUE), 
and age and size compositions. Catch reconstructions for groundfish often extend back to the late 1800s 
or early 1900s and are assumed to cover the entire history of the fishery (models begin from an unfished 
state). CPUE time series and composition data are typically from more recent years (1980-present), with 
some exceptions. Fishery-independent data include time series of relative abundance from trawl and 
hook-and-line surveys, indices of recruitment (SWFSC Rockfish Recruitment and Ecosystem Assessment 
Survey, 1983-present), absolute abundance from visual surveys (2002 and 2012), and time series of 
spawning output (CalCOFI, 1951-present). 

Assessments are conducted with integrated statistical catch-at-age models using Stock Synthesis 3 (SS3), 
a widely-used and flexible software for conducting assessments. The science is reviewed as part of the 
Pacific Fishery Management Council (PFMC) process by the Stock Assessment Review Panel (STAR) 
and the Scientific and Statistical Committee (SSC), and if accepted as best scientific information 
available, adopted by the Pacific Fishery Management Council. 

2.2. Southwest Fisheries Science Center 
 
The Southwest Fisheries Science Center (SWFSC) assesses highly migratory species (HMS; Pacific 
bluefin tuna, albacore, thresher shark, billfish) and coastal pelagic species (Pacific mackerel, Pacific 
sardine, northern anchovy), in addition to groundfish (numerous rockfishes and flatfishes), and Pacific 
salmon as described in the NWFSC section above.  

Highly migratory species assessments rely on fishery-dependent catch, fishery-dependent abundance 
indices, and size compositions. These assessments often contain data from many fishing fleets (~10-30) 
that utilize pole-and-line gear and longlines in areas of the northwest and northeast Pacific Ocean. The 
modeling time frames can be relatively long (e.g., Pacific bluefin models begin in the early 1950s) to 
relatively short (e.g., albacore models begin in the mid-1990s). The assessments are conducted as part of 
international working groups with scientists from the Pacific Islands Fisheries Science Center (PIFSC) 
and agencies in Japan, Korea, and Chinese Taipei as part of the International Scientific Committee (ISC)2.  

Coastal pelagic species rely on the fishery-independent acoustic-trawl survey which spans the west coast 
of the U.S., fishery-dependent catch, and age and size compositions. Fishery catch and composition data, 
for Pacific sardine specifically, date back to the early 1980s. However, the assessment time frames are 
generally quite short as generation time for these species are less than ten years. For example, the Pacific 
sardine and Pacific mackerel plus group begins at age 8. Northern anchovy are rarely observed older than 
4 years old. Short modeling time periods cover multiple generations as the life histories of coastal pelagic 

                                                
1 https://www.pcouncil.org/salmon-document-library/ 
2 https://isc.fra.go.jp/ 

https://www.pcouncil.org/salmon-document-library/
https://isc.fra.go.jp/
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species are shorter than those for highly migratory species and groundfish. Management decisions are 
based on biomass forecast for the upcoming fishing year, rather than relative to reference points.  

Assessments are conducted with integrated statistical catch-at-age models using SS3. Groundfish and 
coastal pelagic species assessments are reviewed as part of the Pacific Fishery Management Council 
process by a STAR, typically composed of a subset of members from the SSC and independent reviewers 
from the Center for Independent Experts (CIE). If deemed suitable, the stock assessment is then presented 
to the full SSC and for consideration as best scientific information available. The voting members of the 
PFMC then adopt catch guidelines based on the scientific and management uncertainties.  

2.3. Alaska Fisheries Science Center 
 
The Alaska Fisheries Science Center (AFSC) is responsible for groundfish, crab, and scallop stock 
assessments for stocks found in the Bering Sea, Aleutian Islands, and Gulf of Alaska. There are two 
groundfish fishery management plans (FMPs), the Bering Sea and Aleutian Islands (BSAI) and the Gulf 
of Alaska (GOA); one crab FMP (BSAI only); and one scallop FMP. 

AFSC and Alaska Department of Fish and Game have multiple long time series of fishery-independent 
data streams for abundance and demographic data including long-line, bottom trawl, and pot surveys. The 
earliest consistent time series begin in 1979 (AFSC longline) and 1982 (Eastern Bering Sea bottom 
trawl). Most stock assessments use reconstructed catch estimates starting between 1960 and 1977, with a 
full domestic observer program providing reliable catch estimates (landings plus discards) starting in 
1991. The observer program provides ages, lengths, and weights of the catches and fishery-dependent 
CPUE in a few cases.  

Groundfish, crab, and scallop FMPs are managed under tiers roughly corresponding to data availability 
and reliability. The scallop assessment focuses only on weathervane scallop and uses a fixed acceptable 
biological catch (ABC)/overfishing limit (OFL) based on average catch for federal management, and the 
State of Alaska sets guideline harvest levels. The majority of targeted and high abundance crab and 
groundfish stocks are assessed using statistical catch-at-age/length models (e.g., Assessment Model for 
Alaska (AMAK), SS3, and Generalized Model for Alaskan Crabs (GMACS)), while the non-target stocks 
are assessed using biomass-based methods (time-series models and survey averages) or catch-only models 
(average or maximum catch). Groundfish life histories range from fast growing higher mortality gadids 
(M≈0.4) to long-lived, slow growing rockfish such as rougheye rockfish (M=0.03). Crabs are not easily 
aged so length based models are applied and present unique challenges such as estimating terminal molt 
probability. The assessment review process comes from the North Pacific Fishery Management Council 
(NPFMC) Plan Teams and SSCs.  

2.4. Pacific Islands Fisheries Science Center 
 
The Pacific Islands Fisheries Science Center (PIFSC) works on stock assessments for a diverse set of 
fishery resources. These are insular and pelagic species such as shallow-water reef fishes; deep-water 
bottomfishes including snappers and groupers; small pelagics; and HMS including billfishes, sharks, and 
tunas. The assessments are conducted through collaboration between NOAA Fisheries and state, 
territorial, and international fisheries agencies and scientists. The stock assessments are used by national 
and international fisheries management bodies, including the Western Pacific Regional Fishery 
Management Council (WPFMC) and the Western and Central Pacific Fisheries Commission (WCPFC). 
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Stock assessments of insular species are conducted for the Hawai´ian Archipelago and the U.S. Pacific 
Territories. Reef fish assessments have typically been conducted with length-based methods and have 
used fishery-independent data from diver surveys for monitoring coral reef ecosystems since the 2000s. 
The bottomfish resources of the main Hawai´ian Islands are primarily assessed using Bayesian production 
modeling approaches (i.e., JABBA, Just-Another Bayesian Biomass Assessment) with catch time series 
going back to the late-1940s and a fishery-independent camera and deep-longline survey since the 2010s. 
In recent years, an integrated statistical catch-at-age model has been developed for uku, or the blue-green 
Hawai´ian snapper, using SS3. The bottomfish resources of the U.S. Territories of American Samoa, 
Commonwealth of Northern Mariana Islands (CNMI), and Guam have also been assessed using 
production modeling approaches with catch and CPUE time series going back to the 1980s. Stock 
assessments conducted by PIFSC for insular domestic species are reviewed in the Western Pacific Stock 
Assessment Review process3. This includes assessments for fishery resources in the Hawai´ian 
Archipelago and U.S. territories of American Samoa, the Commonwealth of the Northern Mariana Islands 
and Guam. 

The stock assessments of highly migratory billfish, pelagic sharks, and tunas are developed as part of the 
International Scientific Commission for Tuna and Tuna-Like Species (ISC) in the North Pacific as well as 
the WCPFC. The assessments of highly migratory pelagic species are typically based in national and 
international waters and are conducted in collaboration with international scientific working groups of the 
ISC or the Secretariat of the Pacific Community4 . These assessments typically apply standardized CPUE 
from multiple fleets with size composition data in an integrated assessment modeling framework such as 
SS3 or Multifan-CL. The fishery-dependent data sources from various countries contribute data on catch 
time series, including discards for sharks where possible. Time frames for HMS vary with data quality; 
some assessment time frames begin in the 1950s while others start in the 1990s. Key data sources for 
these assessments include relative abundance indices and size compositions from commercial longline, 
purse seine, and other fisheries. Stock assessments for some HMS are based on one best-fitting statistical 
catch-at-age model (one base model), while for others (e.g., tropical tunas and more recently for Pacific 
blue marlin), ensemble model approaches are typically applied to account for uncertainty in the 
assessment model structure. International stock assessments conducted for HMS in collaboration with the 
PIFSC are peer-reviewed by the ISC Plenary5  and the WCPFC Scientific Committee6 .  
 
2.5. Northeast Fisheries Science Center 

The Northeast Fisheries Science Center (NEFSC) assesses fisheries that occur north of Cape Hatteras, 
North Carolina. These include many stocks of groundfish, such as Atlantic cod, haddock, pollock, and 
various flatfish; pelagic species like Atlantic herring and mackerel; as well as invertebrates including 
bivalves, lobster, and squid. These stocks are managed under the auspices of two federal fishery 
management councils, the Northeast Fishery Management Council (NEFMC) and the Mid-Atlantic 
Fishery Management Council (MAFMC), depending on where the primary fisheries for each stock are 
based. Some stocks such as black sea bass, summer flounder, scup, bluefish, and Atlantic herring are co-
managed with the states through the Atlantic States Marine Fisheries Commission (ASMFC), and some 
stocks (including eastern Georges Bank cod, haddock and yellowtail flounder) are also co-managed with 
Canada through the Transboundary Management Guidance Committee. NEFSC is also involved in the 
                                                
3 https://www.fisheries.noaa.gov/pacific-islands/population-assessments/western-pacific-stock-assessment-review 
4 https://www.spc.int/  
5 https://isc.fra.go.jp/meetings/future_meetings.html  
6 https://www.wcpfc.int/folder/scientific-committee 

https://www.spc.int/
https://isc.fra.go.jp/meetings/future_meetings.html
https://www.wcpfc.int/folder/scientific-committee
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assessments of several state-managed anadromous stocks, such as striped bass, American shad, and river 
herring, whose management falls to ASFMC.  

The data used at NEFSC are relatively historically rich, with both fishery-dependent and fishery-
independent sources extending back several decades for most stocks. Catch time series often extend back 
to the early 1900s and bottom trawl surveys have been conducted in the region since the 1960s. Catch-at-
age and size for fisheries and surveys have been reliably collected since the 1980s in many cases. 
Observer coverage in the northeast is considerably less than in some other regions, with generally less 
than 10% of commercial trips carrying an observer.  

The primary assessment framework used for groundfish and pelagics is a statistical catch at age model, 
ASAP (Age-Structured Assessment Program). However, groundfish assessments in this region are 
beginning to transition to the state-space Woods Hole Assessment Model (WHAM), which allows for 
improved consideration of time-varying processes via random effects or environmental-productivity links 
within the model (Stock and Miller, 2021). Invertebrates typically use other platforms, including length-
based models such as CASA (catch-at-size assessment) and SS3. Stock assessments are subject to peer 
review by the SSC of the NEFMC or MAFMC at different levels depending on the number of new 
methods applied, with more change resulting in more thorough reviews7.    
   
2.6. Southeast Fisheries Science Center 

The Southeast Fisheries Science Center (SEFSC) assesses HMS (tunas, billfish, pelagic sharks, coastal 
sharks); coastal pelagic species (cobia and mackerels); snappers, groupers, tilefish, triggerfish, amberjack, 
and other reef fishes in the South Atlantic and Gulf of Mexico regions; menhaden in the Atlantic and Gulf 
of Mexico regions; data-limited reef fishes and invertebrates (e.g., Caribbean spiny lobster) in the U.S. 
Caribbean; and shrimp (pink, brown, and white). Stock assessments conducted by the SEFSC are used by 
three regional Fishery Management Councils (U.S. Caribbean (CFMC), Gulf of Mexico (GMFMC), 
South Atlantic (SAFMC)) and Interstate and International Fishery Commissions. 

Stock assessments of HMS including tunas, billfish, and pelagic sharks are developed as part of the 
International Commission for the Conservation of Atlantic Tunas (ICCAT) process, although some HMS 
shark assessments for coastal species are developed and reviewed via the SouthEast Data Assessment and 
Review (SEDAR) process. Due to their transboundary ranges, HMS assessments rely primarily on 
fishery-dependent data from various countries that contribute data on catch (and discards for coastal 
sharks where available; discards are not reported to the ICCAT), relative abundance indices (sometimes 
as joint CPUE indices), and age and size compositions. Commercial fisheries (longlines, purse seines, 
etc.), and to a lesser extent recreational fisheries, harvest these species as targeted landings, with little data 
available concerning discards. Indices of relative abundance and size compositions are derived from 
fishery-independent surveys where available (e.g., coastal sharks). Stock assessments for HMS are 
generally conducted with integrated statistical catch-at-age models using SS3, although other approaches 
are frequently applied (e.g., production models such as JABBA or ASPIC (A Surplus-Production Model 
Incorporating Covariates)).  

Stock assessments of coastal pelagic species rely primarily on fishery-dependent data sources to 
contribute data on catch, discards, relative abundance indices, and age and size compositions. Fishery-
independent data sources are incorporated for mackerels but not for cobia due to the lack of adequate 

                                                
7 https://s3.amazonaws.com/nefmc.org/NRCC_Assessment_Process_Version-18Feb2022_508.pdf 
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sampling. Commercial (primarily line and/or gillnet gears) and recreational fisheries harvest these species 
as both targeted landings and as discards (primarily regulatory), with bycatch removals by the shrimp 
fishery being substantial. Indices of relative abundance and size compositions are derived from fishery-
independent groundfish trawl surveys or plankton surveys for mackerels. Model time periods range from 
starting in 1886 for Spanish mackerel in the Gulf of Mexico to the late 1920s for both king mackerel and 
cobia in the Gulf of Mexico and to the 1980s for cobia in the Atlantic. Stock assessments for these species 
are primarily conducted with integrated statistical catch-at-age models using SS3 or the Beaufort 
Assessment Model (BAM; used for South Atlantic Spanish mackerel and cobia) and are developed during 
the SEDAR process. Models are reviewed by SSC’s of both the GMFMC and SAFMC, and if accepted as 
best available science, adopted by each Council.  

Stock assessments of reef fishes in the South Atlantic, such as groupers, snappers, porgies, triggerfish, sea 
bass, grunts, and tilefishes, utilize data on landings, discards, indices of abundance, size compositions, 
and age compositions. Because these stocks comprise multi-species fisheries, discard rates can be high, 
with discard mortality representing a substantial portion of removals. For many of these reef fishes, 
recreational fleets (headboats, charter boats, and private anglers) capture more fish than commercial fleets 
(handline, longline, traps, and diving). The initial year included in the model for South Atlantic 
assessments varies depending on the species, ranging from 1950 to the 1980s. Length compositions of 
landings are generally available starting in the 1970s or 1980s, and length compositions of discards are 
available starting in the 2000s. Age compositions of landings are generally available starting in the 1990s. 
Most assessments utilize fishery-dependent CPUEs, especially one developed from commercial handline 
logbook data (starting in 1993) and one developed from headboat logbook data (starting in the late 1970s 
or early 1980s). The primary fishery-independent indices are developed from chevron trap sampling 
(starting in 1990) and from video sampling (starting in 2011). Because sampling by these two gears is not 
independent (cameras attached to traps), the two indices are often combined prior to being used as stock 
assessment input. Stock assessments in the South Atlantic are conducted with integrated statistical catch-
at-age models using the BAM and are developed via the SEDAR process. Models are reviewed by the 
SAFMC’s SSC, and if accepted as best scientific information available, adopted by the Council. 

Stock assessments of reef fishes in the Gulf of Mexico rely on numerous fishery-dependent and fishery-
independent data sources to contribute data on catch, discards, relative abundance indices, size 
compositions, and age compositions. Commercial (primarily line and longline gears) and recreational 
fisheries (headboats, charter boats, private or shore anglers) harvest reef fish as both targeted landings and 
as discards (generally regulatory in nature, but can be quite high for some stocks due to either magnitude 
or high discard mortality rates). Bycatch removals of some species (e.g., red snapper) by the shrimp 
fishery can be substantial, and severe red tide events have been incorporated into grouper stock 
assessments as a source of episodic mortality. Composition data include retained length compositions 
(since the mid-1980s), discarded length compositions (since the mid-2000s via NOAA Fisheries and 
Florida Fish and Wildlife Conservation Commission Observer Programs), and retained age compositions 
(since the early 1990s). Fishery-independent bottom longline surveys, groundfish trawl surveys, and 
video surveys are important data streams for many species and index both abundance and size 
composition (of adults, juveniles, or both). The modeling time frames vary considerably from long time 
series (e.g., 1880 start for red snapper) to shorter time series (e.g., 1986 for red grouper and scamp). Stock 
assessments in the Gulf of Mexico are conducted with SS3 and are developed via the SEDAR process. 
Models are reviewed by the GMFMC’s SSC and, if accepted as best available science, adopted by the 
Council. 
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Stock assessments of menhaden in both the Atlantic and Gulf of Mexico regions (two distinct species) are 
conducted using fishery-dependent data (purse seine fisheries) and fishery-independent data (inshore state 
surveys) sources. Stock assessments are conducted using BAM in each region, with assessments 
developed and reviewed during the SEDAR process. The Gulf and Atlantic models are utilized by the 
Gulf States Marine Fisheries Commission and ASMFC, respectively, both of which are responsible for 
setting annual catch advice.  

U.S. Caribbean stock assessments are conducted separately for three island units (Puerto Rico, St. 
Thomas/St. John, and St. Croix) and are data-limited in nature because of variable data quantity and 
quality in each region. Assessments generally rely on fishery-dependent data sources including catch (and 
discards if available), CPUE indices, and size compositions. Dominant commercial and recreational 
fisheries differ considerably between island units and employ a wide range of gears (e.g., handlines, traps, 
diving, etc.) to harvest reef fish and invertebrates. Size data of fish retained by the commercial fisheries 
are collected by port samplers, but data quality and quantity may vary between regions and years. 
Recreational data are only sparsely available for Puerto Rico (catch and discards only, no size 
information) and are completely lacking for the other two island units. Although many fishery-
independent data sources exist, there have been numerous caveats associated with their use in stock 
assessments. Stock assessments in the U.S. Caribbean have been conducted using data-limited approaches 
such as the non-equilibrium mean length estimator via the SEDAR process. Models are reviewed by the 
CFMC’s SSC, and if consistent with best scientific information available, adopted by the Council. The 
most recent data-moderate integrated assessment conducted for the Caribbean spiny lobster was the first 
accepted for use in developing management advice for the region.  

Stock assessments for pink, brown, and white shrimp in the Gulf of Mexico region are conducted using 
fishery-dependent data (trawl fisheries) and fishery-independent data (groundfish surveys) sources. 
Unique to shrimp, stock assessments are not reviewed during the SEDAR process. Penaeid shrimp stock 
assessments using SS3 have been vetted and reviewed by the GMFMC SSC and Special Shrimp SSC 
since their inception in 2009. Given the short lifespan of shrimp, analysts are considering other 
assessment approaches, such as empirical dynamic modeling. 

 
3. COMMON MODEL DIAGNOSTICS 

There are many diagnostics that are commonly used when evaluating a stock assessment model. In this 
section we provide an overview of the currently used model diagnostics. The diagnostics are grouped into 
categories based on the main topic they address. These categories are: model convergence, goodness-of-
fit, and model robustness. For each diagnostic, we describe the goals, lay out key considerations, and 
provide examples of its use within existing stock assessments.   

3.1. Model Convergence 

Stock assessment models typically rely on a numerical optimization procedure to estimate parameters. 
Convergence indicates that the optimization procedure has found a minimum of the objective function 
(i.e., that a solution has been found), and diagnostics can help determine if that minimum is a global 
minimum (i.e., best solution). A lack of model convergence indicates that the optimization criteria used 
for statistical estimation are not satisfied. As a result, parameter estimates and management values should 
not be relied upon. A particular model may not converge due to poor model specification (e.g., over-
parameterization), non-informative data, data conflicts (e.g., two indices of abundance have opposite 
trends), poor initial values, or insufficient iterations of the optimizer. Model convergence can generally be 
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classified into two types, that which provides the maximum likelihood (or highest posterior density) and 
that which provides adequate coverage to estimate the full posterior probability. The latter specifically 
refers to Bayesian applications where marginal distributions may matter. Convergence, either for 
optimization or posterior distribution integration (see MCMC below) indicates a stable, repeatable set of 
estimates. 

Convergence should be checked using multiple diagnostics as no single test is sufficient. There are 
several useful diagnostic checks for evaluating the convergence of a model. The main tests include 
examining (1) if parameter estimates are near or at bounds, (2) if the final gradients are small in 
magnitude, (3) if the Hessian matrix is positive definite, and (4) if model estimates are robust to a range 
of random initial conditions (a.k.a. jitter analysis). Below we provide details on these main approaches 
but note other good practices include calculating the condition number of the covariance matrix or ratio of 
the largest to the smallest eigenvalue, which provides a measure of how well-conditioned the covariance 
matrix is. In this case, a very large condition number indicates that there is ill-conditioning or collinearity 
in the calculated covariance matrix, which in turn indicates that the parameter estimates are less reliably 
estimated. The covariance matrix should also be evaluated to determine if there is confounding of 
parameter estimates, which indicates likely over-parameterization of the model. 

3.1.1.  Checking for parameters estimated at bounds 

Many modeling platforms allow for parameter estimates to be bounded by the analyst. For Bayesian stock 
assessments, these bounds would be defined as priors which may be informative or uninformative, where 
either can be based on outside analysis or a previous model. Bounding parameters is often done to prevent 
the optimization algorithm from searching extreme regions of the potential parameter space; however, 
when parameters are estimated at or close to these bounds, it indicates that the data do not inform 
estimation, that there are problems with the assumed model structure, or that a better fit may be found 
outside of the chosen parameter or prior bounds. Uncertainty calculations are unreliable when a parameter 
estimate is near or at a bound. Therefore, one of the first steps for evaluating model convergence is 
checking to see if any parameters are estimated at a bound. This analysis is commonly employed by all 
regions in the U.S.  

Software used to conduct a stock assessment will often have a number of output files8. Typically, these 
files will report parameter estimates along with the lower and upper bounds. Checking which parameters 
are near bounds is fairly straightforward. However, resolving parameters on bounds can be a more 
significant undertaking, depending on why it occurs. In some cases, the issue can be resolved by fixing 
problematic parameters or by estimating them with informative priors; in other cases, the model might 
require modification (see section 3.3 on Model Consistency). 

3.1.2. First order conditions: Checking that the final gradient is relatively small 

Optimization of a nonlinear objective function for a stock assessment model generally requires the 
iterative calculation of numerical estimates of the parameter vector. The convergence of the iterative 
sequence of estimates needs to be evaluated to ensure that a possible solution has been obtained. 

Here the convergence of a sequence of estimates to a solution is evaluated by either (1) measuring the 
distance of the model gradient relative to zero, or (2) measuring the relative or absolute distance between 

                                                
8 For ADMB-based models (such as SS3, AMAK, ASAP, and BAM), we note that the newest ADMB version 13.0 
provides improved bounds checking relative to earlier versions. 
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successive estimates of the maximum likelihood estimate (MLE) parameter vector. The first approach 
involves calculating the gradient of the objective function for each iterative estimate of the solution, and 
verifying that the gradient is effectively equal to the zero vector at the final solution. Alternatively, if the 
distance between successive estimates of the MLE is close to zero, it implies that they are equal, and thus 
the algorithm being used to search parameter space cannot reduce the negative log-likelihood further. 
There is no standard cut-off for what is considered “close-to-zero”, and regional differences exist in how 
this is determined, but the default used in SS is 0.0001, and thus could be used as a reasonable starting 
point. The two conditions described here are consistent with the existence of a stationary point, which 
could be a local minimum or a saddle point. Information from the Hessian matrix and jittered starting 
values described in sections 3.1.3 and 3.1.4 below can help distinguish between these types of stationary 
points. 

The convergence metric used to stop the iterative gradient descent optimization approach may also be 
influential (e.g., Subbey 2018, see Caveat 3). As a result, it is recommended to check that the iterative 
solution is robust to the stopping criterion used, whether it is the relative or absolute distance between 
successive parameter vector estimates or the gradient being zero.  
 
3.1.3. Second order conditions: Hessian matrix is positive definite  

Optimization of nonlinear stock assessment models are indicated when the gradients of the objective 
function with respect to parameters are near zero and a second order condition is satisfied. The second 
order condition is satisfied when the covariance matrix (inverse Hessian matrix; matrix of second order 
partial derivatives with respect to the parameters) is positive definite at the proposed solution. When the 
Hessian is positive definite (e.g., all eigenvalues are positive) at the point estimate, it essentially means 
that the function is curving upward and you have found a local minimum. This check is employed by all 
Regions.  

This condition can be checked by applying a Cholesky decomposition or an eigenvalue analysis (i.e., 
singular value decomposition) to the estimated Hessian matrix to verify that all of the eigenvalues are 
positive.  For ADMB-based platforms, checks of the Hessian matrix are reported in the console output 
and in the various output files and if it fails, asymptotic approximations to parameter variances will be 
unavailable. 

3.1.4. Alternative initial parameter values (i.e., jitter run) 

Nonlinear models need starting values and sometimes it is not trivial to generate these values. Poor 
choices can lead to non-convergence or convergence upon a local rather than global minimum. It is 
important to evaluate whether the calculated solution that minimizes the nonlinear objective function is 
sensitive to the initial parameter values. Rerunning a model repeating starting estimation at different 
initial parameter values is termed model jittering. Jittering checks to see if any of the randomly generated 
starting values of parameters results in a better solution (i.e., smaller total negative log-likelihood) than 
the reference model. Jittering can thus be conducted to provide confidence that the model has converged 
upon a global solution rather than a local minimum, regardless of the starting values used (but see 
Subbey, 2018).  

Starting the model using alternative but wisely chosen starting values can provide evidence that the model 
estimates are based on the global minimum if all alternatives lead to the same likelihood. The first step of 
this test is to change the initial values used for all estimated parameters and then refit the model. 
Typically, this is done 50-100 times. Technical details of the SS3 implementation of the jitter within 
parameter bounds can be found in the user manual (Methot et al., 2022). Next the analyst should 
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summarize the total likelihood values from each jitter run, and look at which likelihood components are 
changing, if any. If all runs converge upon a similar solution, consider whether the investigated range to 
select alternative initial parameter values is too narrow.  

Jitter analyses are relevant and can be applied in any estimation framework used for a nonlinear model. 
Sensitivity of the calculated optimal solution to initial parameter values should be evaluated for 
frequentist assessment models to ensure that the numerical results are robust. For Bayesian assessment 
models, Markov Chain Monte Carlo (MCMC) simulations to sample the posterior should be conducted 
with multiple chains using different initial parameter vectors. Note that the jittering process should be 
applied enough times to check if a better solution can be found (i.e., the first solution is not at a local 
minimum). In complex assessments, one should check that if a new, better solution is achieved, the 
components of the likelihood that contributed to the finding are understood and plausible. Finally, such an 
exercise can avoid solutions in local minima, but there is no guarantee that the new solution is the global 
minimum. Here it is also important to note that the jitter analysis is a confirmatory analysis that supports 
but does not demonstrate that the putative MLE is a global minimum (e.g., Subbey 2018, see Caveats 2 
and 4). 

3.1.5. MCMC Convergence (for Bayesian methods only)  
 
When using Bayesian approaches to sample from the posterior distribution via MCMC, some additional 
sets of diagnostic tests for convergence should be applied, such as visual inspection of trace plots and 
density plots of parameters across MCMC iterations. Trace plots provide a quick initial check of whether 
successive iterations appear to be independent and identically distributed random samples. The R 
package, “coda”, provides these and gives some convergence tests (e.g., the Gelman Rubin, Geweke, and 
Heidelberger and Welch tests; Gelman et al., 2013). Example application of this approach is available for 
the assessment of the bottomfish complex (Langseth et al., 2018). In addition, some advanced MCMC 
algorithms and diagnostics are presently available for most assessment models. This involves an 
implementation of the Hamiltonian Monte Carlo approach with the “No U-Turn Sampler” (NUTS; for 
details please see Anon 2017, Carpenter et al. 2017). As implemented through the R package “adnuts” 
(Monnahan and Kristensen, 2018) this approach provides a fast, easily parallelized way to test models for 
posterior distribution convergence. The suite of diagnostics is interfaced with the tools available in Stan 
and includes the effective sample size, the ratio of variances within and among chains (Rhat), an 
interactive diagnostic tool ShinyStan (Gabry and Veen 2022), and quickly highlights issues with model 
specifications and parameterizations. A baseline convergence check could be ensuring that the maximum 
Rhat is small (<1.05) and that the minimum ESS is sufficient for inference, with hundreds of samples 
typically being sufficient for estimating means, but more required for tail probabilities.  Edwards et al. 
(2022) used adnuts to investigate correlation between parameters and likelihood surfaces and check 
posterior estimates and marginal distributions with their asymptotic equivalents.  

3.2. Goodness of Fit 

Goodness of fit is a measure of how well the predictions from a statistical model match the data. A stock 
assessment model with a good fit to the data is more likely to account for important processes in the 
population and to produce useful estimates of stock size, status, productivity, and projections to inform 
management. The presence of systematic misfit to the data is a sign that the model may be misspecified. 
For a model to be useful, however, characteristics other than goodness of fit should also be considered 
(e.g., parsimony and out-of-sample predictive ability). Here we describe two approaches used to evaluate 
the goodness of fit of a model, residuals and likelihood profiles.  
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3.2.1. Residuals 
Residuals represent the difference between 
the observation and the value predicted by 
the model. Residual analysis is probably 
the most common diagnostic used to 
identify a model’s goodness-of-fit and is 
used across all regions in the U.S. 
Contemporary stock assessment models 
often include multiple data types (e.g., 
indices of abundance, size and age 
compositions, catch, discards), and given 
that residuals will be available for every 
type, evaluating tradeoffs in residuals is 
often a key component of developing and 
fitting models. For example, in the Gulf of 
Mexico red grouper stock assessment, 
there was poor fit to commercial vertical 
line fishery discard data (Fig. 1; top panel), 
but a better fit to the commercial longline 
fishery discard data (Fig. 1; bottom panel). 

Model fit can be evaluated by looking at 
the magnitude of the residuals relative to 
observation error or the presence of trends 
in residuals. Ideally, residuals should be 
minimized, randomly distributed (i.e., 
displaying no prominent patterns or 
systematic deviations), consistent with 
distributional assumptions (e.g., normally 
distributed), and have few outliers (i.e., 
observations that are significantly outside the 
range of model predictions). For example, 
residuals that are consistently positive or negative would indicate that an important process is not 
accounted for in the model. A runs test can reveal whether sequences of positive or negative residuals are 
longer than might be expected simply from chance (Wald and Wolfowitz, 1940; Carvahlo et al., 2021). 

Raw residuals can reveal lack of fit, such as residual patterns, but there are more sophisticated diagnostics 
for residuals. The interpretation of raw residuals may be challenging for asymmetrical or discrete 
statistical distributions. Thus, multiple residual definitions have been developed, each with properties that 
increase their utility in assessing goodness of fit. Residuals that are scaled by a measure of variability can 
help identify observations that are improbable given the model. A common approach is to divide the raw 
residuals by an estimate of the residual standard deviation (sometimes referred to as ‘standardized 
residuals’). This practice generates residuals that describe the distance between observed and predicted 
values in standard deviation units. Standardized residuals with an absolute value above a certain threshold 
(e.g., 2 or 3 standard deviations) can be identified as outliers. Residuals can also be plotted in more 
complex ways than just observed versus expected as a quick but coarse means of diagnosing residual 

Figure 1: Observed (open circles) and predicted 
discards (blue dashes) in 1000’s of fish of Gulf of 
Mexico red grouper from the commercial vertical (top 
panel) and longline (bottom panel) fleets, 1993-2013 
(SEDAR, 2015). 
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patterns. For example, plots of 
residuals versus time/fitted 
values/covariates/omitted variables of 
datasets (Fig. 2) help analysts identify 
correlations between poor model fit 
and time/fitted values/etc. 

If there are strong residual patterns, 
there may be fishery or population 
dynamics (time-varying selectivity or 
growth) that the current model 
parameterization is failing to account 
for, particularly if the magnitude of 
the residual pattern is correlated with 
time. The 2020 Pacific sardine 
benchmark assessment, for example 
(Kuriyama et al., 2020), included a 
time-varying age-based selectivity 
form to accommodate dynamic 
movements and migrations leading to 
high year-to-year variability in the fish 
available to fishing fleets, leading to 
age compositions that can be quite 
variable. The tradeoff, however, is that 
the model may not always be able to 
reliably estimate the increased number 
of parameters compared to a model 
without time-varying selectivity, 
resulting in model misspecification. 
Residual analysis is just one 
component of model development and 

should always be interpreted in the context of knowledge of the fishery system. 

There are many logistical challenges associated with fishery data. Thus it is unreasonable to expect 
perfect model fits. It is an analyst’s responsibility to evaluate a range of model configurations and 
hypotheses to develop a model with acceptable distributions of residuals.  

3.2.2. Likelihood 

Integrated stock assessment models with joint likelihood functions typically incorporate many types of 
data to characterize biological processes (e.g., stock-recruit relationships, growth, movement). A major 
challenge with these integrated models, however, is the influence of the different data types on the 
likelihood of estimates of abundance or population trends. The different data types may provide different 
and sometimes conflicting information to the joint likelihood of the model.  

Likelihood profiles, in which a parameter of interest (e.g., steepness, natural mortality, equilibrium 
recruitment) is fixed at different values and the model is re-estimated, allow the analyst to identify the 
relative information in each data type and get a sense of the likelihood surface surrounding MLEs. 
Likelihood profiles can identify data sets with conflicting information (e.g., see “Piner plots” in r4ss; Fig. 

Figure 2: Time series example. Relative abundance (CPUE) 
time series with observed and expected values (upper panel) and 
scaled residuals over time (lower panel) for Atlantic cobia. 
Source: SEDAR, 2020a.  
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3) and evaluate model sensitivities. Values 
that fall within the 95% confidence interval 
(dashed horizontal line) are considered to be 
supported by the data. Data conflicts are 
indicated when the objective components of 
different data sources achieve minima at 
different values for a given parameter. 
When this occurs, the parameter estimate is 
sensitive to the relative weighting among 
data sources, and therefore careful data 
weighting becomes even more critical. 
When the profile is flat and/or the parameter 
is minimized at a bound (e.g., bottom panel 
in Fig. 3) it suggests that there is an inability 
to estimate the parameter from any of the 
data sets and that the parameter should 
potentially be fixed, as it was in the Pacific 
sardine stock assessment (Kuriyama et al., 
2020).  

Univariate likelihood profiles may not 
account for correlation among parameter 
estimates, and it is recommended to evaluate 
the estimated correlation matrix for 
confounded parameters with high 
correlations. Bivariate likelihood profiles, 
where two parameters are fixed across a 
range of values and the model is rerun for 
each combination of the fixed parameters, 
are time consuming but can be informative, 
especially when parameters are correlated. 
For vermilion snapper in the Gulf of 
Mexico, profiles were carried out for a 
combination of steepness and stock-recruit 
variance parameters, and contour plots (Fig. 
4), where the color scale provides the 
negative log-likelihood value, were used to 
determine the relationship between the 
parameters. Although the final model 
estimates of σR (0.3; eventually fixed at this 
value in the base model) and steepness 
(0.71) provide the smallest negative log-
likelihood value, a number of alternate 
pairings give approximately similar negative 
log-likelihood values (SEDAR, 2020b).  

When comparing likelihoods, it is important to evaluate the total likelihood and individual likelihood 
components associated with each data type (e.g., indices, length compositions, age compositions) and data 

Figure 3: Likelihood profile across fixed values of 
natural mortality (M) (top, middle panel), and steepness 
(bottom panel) from the 2020 Pacific sardine stock 
assessment (Kuriyama et al., 2020). 
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source (e.g., multiple fleets of a specific data type). When making these comparisons, analysts may 
prioritize one data type more than another based on prior knowledge. Comparison of likelihoods between 
models with different data weights (e.g., different effective sample sizes) should be avoided, as this 
rescales the likelihood and prevents direct comparison.  

When data conflicts are detected, this might indicate sampling error in a data component or that the model 
is misspecified. If the model is misspecified, additional or alternative structure/complexity may be 
necessary. An analyst can therefore try adding more or less complexity to the model to minimize the total 
likelihood and likelihoods associated with each data source. Increasing the complexity of a model will 
increase the number of parameters and likely result in a decrease in likelihood values. Metrics such as 
Akaike Information Criterion (AIC; Akaike, 1998) are one means of avoiding overfitting and accurately 

Figure 4: Contour plot of steepness and the standard deviation of recruitment variability (σR) for Gulf 
Vermilion Snapper (SEDAR, 2020b). 
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characterizing a population’s dynamics. Making a model more complicated, however, is not always the 
appropriate solution, especially if the issues are due to sampling errors and not model misspecification. 
Often, when a model fails a diagnostic test, it is assumed to be an issue with the model, but it is also 
important to consider data issues in these situations. Indications of sampling error can be critical to the 
assessment model, but can also be among some of the most difficult to handle. Some approaches to 
dealing with these data issues (if identified) include, but are not limited to: dropping the data source, 
modifying the input data, or down weighting the data input.  

3.3. Model Consistency & Sensitivity Analyses  

3.3.1. Basic robustness to assumptions  

Assessments contain many different inputs and structural assumptions. Various types of sensitivity 
analyses can be used to evaluate the response (i.e., the model’s basic robustness) to changes in model 
input and model structure, including key assumptions related to biology, fishing mortality, population 
structure, and observation and process errors. This can be useful for characterizing uncertainty in the 
assessment or simply for a better understanding of model behavior. While many U.S. assessments are 
considered data-rich, there can still exist uncertainty in various processes and the differences among 
models considered in sensitivity analyses often show greater variability than the internally estimated 
variances of parameters and derived quantities in the base model (Fig. 5). Characterizing this broader 
level of uncertainty is one motivation for ensemble modeling.  

Sensitivity analyses should evaluate the influence of alternative assumptions on model results. Sensitivity 
analyses are a key component of U.S. assessments used in all regions to quantify the uncertainty 
associated with estimating (or fixing) different parameters or alternative model parameterizations, and 
subsequently evaluating model results. Sensitivity analyses may include model runs with a range of 
assumptions. Examples of situation-dependent assumptions might include change points in time (e.g., 
gear switching for a fishing fleet), population structure, stock-recruitment, growth, density-dependence, 
and maturation. Spatial structure is another assumption that may be explored, but often this requires a 
large amount of data (e.g., bluefin tuna which spans the Pacific Ocean) and even in these cases not much 
structure may be estimable.  

The first step to running a sensitivity analysis is to identify key uncertainties that can be practically 
evaluated, and then to provide plausible scenarios. In addition, it is important to identify the reason for 
each sensitivity run. Is it proposed as a possible alternative state of nature, or is it simply to better 
understand model behavior? Exploration and analysis of these elements of the assessment are often the 
focus of review panel meetings. For example, the 2021 Lingcod STAR Panel report9 had 20 panel 
requests that involved adding time-varying selectivity parameters, estimating early recruitment deviations, 
and fixing the female natural mortality parameter.  

3.3.2. Age-structured production model 

One specific sensitivity analysis tool, commonly used for highly migratory species assessments primarily 
at the SWFSC and PIFSC, is an age-structured production model (ASPM).  The ASPM diagnostic was 
proposed by Maunder and Piner (2015) to further evaluate model misspecification and ascertain the 
influence of composition data on the estimates of trends and absolute abundance. In its essence, the 

                                                
9 https://www.pcouncil.org/documents/2021/10/lingcod-stock-assessment-review-star-panel-report.pdf/ 

https://www.pcouncil.org/documents/2021/10/lingcod-stock-assessment-review-star-panel-report.pdf/
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ASPM can be used for assessing whether surplus production and the observed catches alone can explain 
the trends in the indices of abundance. 

The ASPM diagnostic is computed as follows: (i) run the fully integrated model; (ii) fix selectivity 
parameters at the MLE from the fully integrated model, (iii) turn off the estimation of all parameters 
except the scaling parameters and the parameters representing the initial conditions (a parameter for the 
equilibrium recruitment and a parameter for the equilibrium fishing mortality), set the recruitment 
deviates to zero (early recruitment and model period recruitments); (iv) fit the model to the indices of 
abundance only; and (v) compare the estimated trajectory to the one obtained in the base case. 

If the ASPM is able to fit the indices of abundance that have good contrast (i.e., those that have declining 
and/or increasing trends) then Maunder and Piner (2015) suggest that this is evidence of a production 
function's existence, and the indices likely provide information about absolute abundance. They refer to 

Figure 5: Example where sensitivity analyses to alternative assumptions (in this case related to 
parameterization of sex-specific selectivity for lingcod) shows greater variability in spawning 
biomass (top) and fraction unfished (bottom) than the uncertainty associated with the base 
model (blue shading) (from Taylor et al., 2021). 
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this situation as “the catch explains the indices 
well.” Subsequently, an ASPM with recruitment 
deviations estimated (ASPMrec) can be applied 
to evaluate whether temporal variability in 
recruitment can be estimated without using age- 
or size-composition data directly. 

If the ASPM does not fit the indices well, that is 
an indication that the catch alone cannot explain 
the index trends. This can have several causes, 
including that the stock is recruitment-driven, or 
the indices of relative abundance are not 
proportional to abundance. Checking whether 
the stock is recruitment-driven involves fitting 
the ASPMrec. If the ASPMrec cannot capture 
the population trajectory estimated in the 
integrated model, it can be concluded that the 
information about scale in the integrated model 
is not coming from the CPUE data and the 
catches, but rather from the composition data. 
Composition data can often provide the best 
information about recruitment and selectivity, 
but their influence on the estimation of absolute 
abundance needs to be taken with caution.   

An example of the use of the ASPM diagnostic 
is in the stock assessment for the North Atlantic 
shortfin mako shark (Courtney et al., 2017). 
Pelagic longline operations catch the vast 
majority of shortfin mako shark, but due to 
strong spatial structuring of size classes, the 
selectivity pattern differs among the fishing 
fleets operating in the different regions. The 
population dynamics of shortfin mako reveal an 
unusual combination of slow somatic growth, 
very late maturation, and steep dome-shaped 
selectivity. The shortfin mako shark example 
represents a length-based age- and sex-structured 
multi-fleet model fit to six standardized CPUE 
indices. Fisheries-dependent length-composition 
data are assumed to be representative of the 
different selectivity patterns for the six major 
surface longline fishing fleets. 

The CPUE trend estimated by the ASPM is very different from those estimated in the fully integrated 
assessment model (Fig. 6, top panel). The ASPM diagnostic showed a consistent declining trend over 
time. The fit to the same index in the fully integrated shortfin mako shark and ASPMrec models was 
almost identical and had a more oscillatory pattern (Fig. 6, top panel). The ASPM can estimate the 

Figure 6: Comparison between the fully 
integrated base-case and the deterministic Age-
Structured-Production Model (ASPM) results for 
North Atlantic shortfin mako (Courtney et al., 
2017). 
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“correct” scale of the biomass only when recruitments are allowed to vary (Fig. 6, middle panel). Results 
from the ASPMrec indicated that the CPUE data and the catches contained information on temporal 
variability on recruitment (Fig. 6, bottom panel).   

Any stock assessment must find the relationship between fishing and changes in abundance. The ASPM 
is straightforward to produce in software packages like SS3 (see Carvalho et al., 2021 and the associated 
{ss3diags} R package10), and its implementation should be encouraged while building a complicated 
assessment model.  

To date the ASPM diagnostic is widely used for highly migratory species assessments at the SWFSC and 
PIFSC, but has only rarely been applied to groundfish or reef fish stocks. The application to Pacific Hake 
by Stewart and Forrest (2011), Pacific ocean perch11, and blueline tilefish in the South Atlantic in 
SEDAR 50 (SEDAR, 2017) provide a few examples. 

3.3.3. Leave-one-out analysis 

A leave-one-out analysis (sometimes referred to as a “jack-knife” analysis) is used to determine if any 
single data source (or data point) is having undue influence on the model estimates and causing tension 
with other data in terms of estimating parameters. Leave-one-out analysis involves removing individual 
data sets one at a time and refitting the model to the remaining data. This analysis can be used to evaluate 
the stability of the assessment (i.e., whether the addition or the change of a data source leads to different 
model estimates). Leave-one-out analysis can also be conducted to identify data points with high leverage 
and to evaluate the predictive capability of the assessment model (Brooks and Deroba, 2015). If removing 
a data point leads to dramatically different results, the data point should be re-evaluated with the data 
providers to ensure it reflects the best available data.  

Leave-one-out analyses of indices of abundance are often conducted to determine if any single index is 
driving model estimates of derived quantities (e.g., spawning biomass, recruitment). Each index of 
abundance is removed one at a time, and results can identify indices that may be giving conflicting 
abundance trend signals compared to the remaining indices. Additionally, groups of indices may be 
removed simultaneously (e.g., all recreational CPUE indices, all commercial CPUE indices, all fishery-
dependent CPUE indices, and all fishery-independent surveys). A full leave-one-out analysis would 
include removing all information associated with a survey (index of abundance, including associated age 
or size composition data) one survey at a time and refitting the model.  

Leave-one-out analyses can be thought of as sensitivities and requires the following steps: (i) run the 
integrated assessment model; (ii) remove one data source at a time and refit (i); and (iii) repeat (ii) for 
each data source. Within SS3, this analysis can be conducted by multiplying the likelihoods for a given 
fleet times zero such that they do not inform parameter estimates. For surplus production models that are 
fit to more than one abundance index, individual indices are removed one at a time. It may also be 
possible to conduct a ‘leave-one-in’ analysis, fitting the model to only one index at a time. Note that if a 
data source is removed, the analyst must also turn off estimation of any parameters that depend entirely 
on that data source (e.g., catchability associated with an index). Trends in year-specific estimates of 
abundance, biomass, recruitment, and mortality can then be compared to determine if any one data source 
is greatly impacting the model. The effects of removing composition data on growth can also be 
examined. The expected outcome is that no one data source will be driving the assessment results, and 

                                                
10 https://github.com/PIFSCstockassessments/ss3diags  
11 https://www.pcouncil.org/documents/2017/06/pacific-ocean-perch-star-panel-report-26-30-june-2017.pdf/  

https://github.com/PIFSCstockassessments/ss3diags
https://www.pcouncil.org/documents/2017/06/pacific-ocean-perch-star-panel-report-26-30-june-2017.pdf/
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that the results will generally be in agreement when each data source is removed. If removing a dataset 
leads to dramatically different results, the dataset should be reexamined to determine if the sampling 
procedures are consistent and appropriate (e.g., an index may only be sampling a subunit of the stock and 
resulting abundance signals may only reflect a local sub-population and not the trend in the entire stock).  

Regional Practices and Examples  

Leave-one-out analyses are handled differently among regions. In the Southeast, leave-one-out analyses 
are standard sensitivity runs conducted for Gulf of Mexico reef fish assessments. They often focus on 
removing one index of abundance at a time, or a group of indices. Full leave-one-out analyses are usually 
not conducted because the other data sets are considered fundamentally necessary to stabilize the 
assessment. Generally, a leave-one-out analysis is not used as a pass/fail criterion for a base assessment 
model, and no model adjustments are made based on the results. It is primarily used to provide scientists 
and managers with an understanding of how sensitive the model outcomes are to the indices of abundance 
that are included in the model, given the high volume of indices incorporated into Southeast assessments 
(range: 4 [Gulf yellowedge grouper, Gulf tilefish] to 18 [Gulf red snapper]). For example, the removal of 
the video index for the Gulf vermilion snapper assessment had a noticeable impact on both the estimate of 
spawning output and recruitment in the last few years of the assessment (Fig. 7). While this was discussed 
in detail during the assessment process and by the Gulf SSC, ultimately the base SEDAR67 model 
(including all indices of abundance) was used to set catch advice (SEDAR, 2020b). 

Another form of leave-one-out analysis applied in the SEFSC focuses on recreational removals. Time 
series of recreational landings and discards commonly display “spikes,” in which a single value 
(observed) is ~4-5 times larger than those in surrounding years.  The veracity of these spikes is routinely 
questioned, as is their effects on assessment output and projections.  Thus, these effects are explored 
through sensitivity analyses where the spike is left out and replaced by a local average.  

At the NEFSC, leave-one-out analyses are conducted in a similar manner as the SEFSC and are generally 
limited to considering the impact of removing abundance indices from the assessment. While not 
mandated in the Terms of Reference, leave-one-out analyses are often completed in assessments that 
incorporate several indices of abundance in order to evaluate the sensitivity of model estimates to the 
included indices. However, leave-one-out analyses have not been used to inform dataset weightings or 
which indices are included in the assessment model. 

At the NWFSC and SWFSC, leave-one-out analyses vary among assessments where some assessments 
will emphasize investigating the removal of a single data type (e.g., the index) and more data-rich 
assessments will perform a full leave-one-out analysis. Few assessments to date have explored the 
removal of individual data points within a data set. When used for management, surplus production 
models often perform both leave-one-out and leave-one-in analyses to better understand conflicts in trend 
information (Fig. 8; Dick and MacCall, 2014). Highly migratory species assessments use jackknifing in 
the development of abundance indices but not in the formal assessment. Coastal pelagic species do not 
include jackknifing nor leave-one-out analyses. 

The PIFSC does not typically use jackknife-type analyses for characterizing uncertainty in stock 
assessments. This is primarily due to the fact that there are few relative abundance indices available for 
most stock assessments. However, many PIFSC assessments include sensitivity analyses where one or 
more abundance index or size composition likelihood components are excluded from the model fitting 
process. This sensitivity information is provided to characterize the effects of removing one or more data 
sources on model diagnostics and results. 
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Staff at the PIFSC are currently investigating the use of k-fold cross validation to estimate relative model 
weights for ensemble modeling, where we note that the k-fold cross validation procedure is similar to the 
delete-m jackknife procedure. Here the idea is to quantify the individual model fits to the hold-out data 
subset using a specific distribution that can be described by a log-likelihood function. The sum of the log-
likelihood fits over the k-fold data subsets can provide a measure of predictive accuracy for each model in 
the ensemble, and these measures can be used to compute model weights (Hauenstein et al., 2018) that are 
similar to the AIC weights for multimodel inference described in Burnham and Anderson (2002). This 
approach is very general and can be applied with any model fitting algorithm (e.g., maximum likelihood, 
Bayes, random effects, machine learning, etc.) provided there is an appropriate log-likelihood for the 
predicted data.  

 

Figure 7: Results of a leave-one-
out analysis with the fishery-
dependent and independent indices 
for Gulf vermilion snapper. 
Spawning stock biomass and 
recruitment (million fish; bottom 
panel) are shown. The analysis was 
performed by running the base 
model with one of the indices 
removed (or all of the fishery-
dependent CPUE indices) in order 
to determine if any given index had 
undue influence on model results or 
indicated widely differing trends in 
population trajectories. The results 
indicate most of the indices are 
generally in agreement, but the 
video index appears to be a strong 
driver in estimating the extreme 
2015 recruitment event. Source: 
SEDAR, 2020b. 
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3.3.4. Retrospective Analysis  

A retrospective analysis is used to determine whether there is a misspecification in the estimation model 
(ICES, 2020).  It assesses the impact of the most recent years of data on model estimates and determines 
whether estimated quantities are consistently over- or underestimated. 

A retrospective pattern is a systematic inconsistency among a series of model estimates such as 
recruitment, population size, spawning stock biomass, or fishing mortality, based on increasing years of 
data (Mohn, 1999). Retrospective patterns often arise due to a temporal change in life-history 

Figure 8: Median spawning biomass for cowcod surplus production model fit by excluding 
individual indices (‘leave-one-out’, upper panel), or including individual indices (‘leave-
one-in’, lower panel. Source: Dick and MacCall, 2014. 
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characteristics (e.g., natural mortality, growth), selectivity, or in the accuracy of input data (e.g., fishery 
removals) that are misspecified in the model (Legault, 2009; Deroba, 2014; Hurtado-Ferro et al., 2015). A 
within-model retrospective analysis is useful for determining an internal inconsistency in the data because 
the only change between model runs is the number of years of data (Legault, 2009).  

The following steps are necessary for computing a retrospective analysis: (i) run the integrated assessment 
model; (ii) remove the terminal year of data, including catches, and rerun the model to the reduced 
terminal year; (iii) repeat step 2 for a total of at least 5-7 years. Trends in year-specific estimates of 
recruitment, abundance, biomass, and mortality can then be compared to results from the base model with 
all years of data to determine if they are consistently over- or underestimated. Note that particular care 
should be taken if the assessment model has time blocks on selectivity or natural mortality when 
conducting retrospective analyses. 

The severity of a retrospective pattern can be evaluated using Mohn’s rho, which is defined as the average 
of the relative differences between estimates from a model using a truncated time series and estimates 
from one based on full time series (Mohn, 1999; Hurtado-Ferro et al., 2015).  A positive Mohn's rho value 
indicates that the estimated quantity is consistently overestimated as years of data are removed. If a 
retrospective pattern (consistent over- or underestimation of biomass, abundance, and/or mortality across 
model runs) exists, a retrospective adjustment to model estimates can be made, and it is typically based on 
Mohn’s rho. For example, 𝜃𝜃� =𝜃𝜃 1

1+𝜌𝜌
, where  𝜃𝜃� is the adjusted value, 𝜃𝜃 is the unadjusted value, and 𝜌𝜌 is 

Mohn’s rho (see Legault, 2009). However, ideally before any adjustments to model estimates are made, 
the model parameterization should be re-evaluated to determine if adjustments to the model 
parametrization could address the retrospective pattern.  

Regional Practices and Examples  

Retrospective patterns are handled differently among regions. At the NEFSC, if a “major” retrospective 
pattern exists, defined as an adjustment that shifts the terminal year fishing mortality or spawning 
biomass outside the 90% confidence bounds of the original estimates, a retrospective adjustment is 
applied to model results for determining stock status as well as for projections.  In some extreme cases, 
however, the retrospective pattern can result in the rejection of the age-structured assessment model, as 
was the case for the Yellowtail flounder (Legault et al., 2014) (Fig. 9) and Witch flounder (NEFSC, 2017) 
assessments.  

For AFSC assessments, all groundfish and crab models are required to produce a 10 year retrospective 
analysis on female spawning biomass (or mature male biomass for crabs). Guidance explicitly states that 
Mohn’s rho in isolation is not a cause for rejection of a model or an adjustment, but rather to be used in 
evaluating alternative models (Hanselman et al., 2013). The presence of a large positive Mohn’s rho has 
been used to justify recommending more precautionary catch advice in some cases or to choose a 
different model alternative. In some cases, evaluating the sequence of tuning components of the 
retrospective analyses can reveal the cause (e.g., Lowe et al., 2018). 

Retrospective analysis is also required for all SWFSC and NWFSC groundfish and coastal pelagic species 
assessments. Highly migratory species assessments evaluate retrospective patterns, although this is not a 
formal requirement for problematic retrospective patterns. Coastal pelagic species assessments generally 
have short modeling periods (10-15 years) and require strong assumptions on biological parameters. This 
results in a negligible retrospective pattern. However, the results of the analysis are not formally 
incorporated into management decisions. Relatively few west coast groundfish assessments show strong 
retrospective patterns.  



 

23 
 

Retrospective analysis is commonly used as a model diagnostic for both integrated assessment models 
and Bayesian biomass dynamics models at the PIFSC. A typical analysis uses a time period of 5 years of 
retrospective peels to evaluate whether there is a consistent retrospective pattern for providing 
management advice. Retrospective patterns are evaluated for estimates of spawning biomass and fishing 
intensity, or fishing mortality, using Mohn’s rho (Mohn, 1999) or similar diagnostic (Hurtado-Ferro et al., 
2015) as a measure of the strength of the retrospective pattern. The direction and strength of the 
retrospective patterns in spawning potential and fishing intensity are reported as model diagnostics and 
used for management advice.  

Figure 9: Summary plots showing strong retrospective patterns in fishing mortality (F, top 
panel), spawning biomass (SSB, middle panel), and recruits (age-1 R, bottom panel) from the 
Yellowtail flounder assessment (Legault et al., 2014) as successive years of data are excluded 
from the assessment.  
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For example, in the 2021 stock assessment of Pacific blue marlin (ISC, 2021), there were two equally-
weighted SS3 models in the model ensemble classified as best scientific information available. Then 
Mohn’s rho was calculated for the biomass and fishing mortality peels, and the severity of the 
retrospective pattern was based on the range provided by Hurtado-Ferro et al. (2015), with values higher 
than 0.20 and lower than -0.15 used as an indication for problematic retrospective patterns. Both models 
exhibited a relatively strong retrospective pattern in recent years, with Mohn’s rho values for spawning 
biomass and fishing mortality of about 𝜌𝜌(spawning biomass) ≈ 0.3 and 𝜌𝜌(fishing mortality) ≈ -0.3, 
respectively. In this case, the conservation advice included a statement for managers to consider when 
making management decisions that there is an apparent tendency to overestimate spawning biomass and 
underestimate fishing mortality, in part due to an unusual decline in Japanese longline CPUE in recent 
years. 

At the SEFSC, retrospective analysis is routinely used to assess the consistency of terminal year model 
estimates. Generally, this analysis is not used as a pass/fail criterion, and results for 5- or 10-year 
retrospective analyses are presented to managers to consider any additional uncertainties when making 
decisions. If the resulting estimates of derived quantities such as spawning biomass or recruitment differ 
significantly, particularly if there is serial over- or underestimation of any important quantities, the model 
may have some unidentified process error, which requires reassessing model assumptions.  

Retrospective analysis is also a commonly used diagnostic tool for European assessments within the 
International Council for the Exploration of the Sea (ICES) community. A 2020 ICES report provides 
recommendations on retrospective patterns which may also prove useful in U.S. stock assessment context, 
and we point readers to this report for a more in-depth discussion on retrospective analysis (ICES, 2020).  

4. CONCLUSIONS & FUTURE DIRECTIONS 

The goal of this document is to provide a description of the diagnostics that are most top-of-mind for 
stock assessment scientists from around the country. This document is by no means comprehensive, and 
we suggest readers also consult Carvalho et al. (2021) and reports from the Center for the Advancement 
of Population Assessment Methodology12. 

Stock assessment methodology is developing rapidly, and these developments will be necessary given a 
future with a changing climate and dynamic environmental conditions. Many of the diagnostics here will 
likely continue to be relevant, even with more advanced methods and inclusion of additional data sources. 
The next generation of U.S. stock assessment models are currently in development as part of the NOAA 
Fisheries Integrated Modeling System working group. The group is focusing on more explicit exploration 
and integration of socioeconomic factors and environmental drivers in stock assessments and transitioning 
to a modular and extensible software that can further leverage high performance and cloud computing. 
Despite future advances in software and methodology, stock assessment scientists will continue to rely on 
a strong understanding of the data and a suite of diagnostics to identify model sensitivities to ensure that 
fisheries management is informed by the best scientific information available. 
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